日韩欧美精品96一区二区,秋霞理论理论福利院久久,一个人的在线观看www,性温盈久久亚洲AV福利

產(chǎn)品展示
當(dāng)前位置:首頁 > 全部產(chǎn)品 > 英國Ossila > 材料 > 石墨烯 英國Ossila石墨烯氧化物E881 進(jìn)口石墨烯氧化物E882

石墨烯 英國Ossila石墨烯氧化物E881 進(jìn)口石墨烯氧化物E882

石墨烯 英國Ossila石墨烯氧化物E881 進(jìn)口石墨烯氧化物E882
廠家直接訂貨、原裝正品、交期準(zhǔn)時(shí)、歡迎新老客戶?。?!經(jīng)銷商請致電我司?。?!

分享到:

只用于動物實(shí)驗(yàn)研究等

Graphene Oxide Powders and Solutions

Graphene oxide is one of the most popular 2D materials available. This is due to the wide range of fields that it can be applied to. It has a distinct advantage over other 2d materials (such as graphene), as it is easily dispersed within solution; allowing for processing at high concentrations. This has opened it up for use in applications such as optical coatings, transparent conductors, thin-film batteries, chemical resistant coatings, water purification, and many more.

Ossila have two types of graphene oxide powders available, with flake sizes between 1-5um and 1-50um. In addition, we also offer pre-dispersed graphene oxide solutions for simple instant use.

Graphene Oxide Powder

Graphene Oxide Powder StructureGraphene Oxide Powder XRD
  • List of products
  • What is graphene oxide?
  • Dispersion guides
  • Technical data and images
  • Publications
 

石墨烯 英國Ossila石墨烯氧化物E881 進(jìn)口石墨烯氧化物E882

Product List

Graphene Oxide Powders

Product codeM881M882
Flake Size1-5 μm1-50 μm
Flake Thickness0.8-1.2 nm0.8-1.2 nm
Single layer ratio>99%>99%
Purity>99%>99%
Packaging InformationLight resistant bottleLight resistant bottle

Graphene Oxide Solutions

Product codeM883M884M885M886
Solution Volume100ml100ml100ml100ml
Concentration5 mg.ml-10.5 mg.ml-15 mg.ml-10.5 mg.ml-1
SolventsWater:IPAWater:IPAWater:IPAWater:IPA
Flake Sizes1-5 μm1-5 μm1-50 μm1-50 μm
Packaging Information4 x 25 ml bottles4 x 25 ml bottles4 x 25 ml bottles4 x 25 ml bottles

石墨烯 英國Ossila石墨烯氧化物E881 進(jìn)口石墨烯氧化物E882

What Graphene Oxide is

Graphene oxide (GO), also referred to as graphite/graphitic oxide, is obtained by treating graphite with oxidisers, and results in a compound of carbon, oxygen, and hydrogen in variable ratios.

The structure and properties of GO are much dependent on the particular synthesis method and degree of oxidation. With buckled layers and an interlayer spacing almost two times larger (~0.7 nm) than that of graphite,  it typically still preserves the layer structure of the parent graphite.

GO absorbs moisture proportionally to humidity and swells in liquid water. GO membranes are vacuum-tight and impermeable to nitrogen and oxygen, but permeable to water vapours. The ability to absorb water by GO depends on the particular synthesis method and also shows a strong temperature dependence.

GO is considered as an electrical insulator for the disruption of its sp2 bonding networks. However, by manipulating the content of oxygen-containing groups through either chemical or physical reduction methods, the electrical and optical properties of GO can be dynamically tuned. To increase the conductivity, oxygen groups are removed by reduction reactions to reinstall the delocalised hexagonal lattice structure. One of the advantages GO has over graphene is that it can be easily dispersed in water and other polar organic solvents. In this way, GO can be dispersed in a solvent and reduced in situ, resulting in potentially monodispersed graphene particles.

Due to its unique structure, GO can be functionalised in many ways for desired applications, such as optoelectronics, drug delivery, chemical sensors, membrane filtration, flexible electronics, solar cells and more.

GO was first synthesised by Brodie (1859), followed by Hummers' Method (1957), and later on by Staudenmaier and Hofmann methods. Graphite (graphene) oxide has also been prepared by using a "bottom-up" synthesis method (Tang-Lau method) where glucose is the sole starting material. The Tang-Lau method is considered to be easier, cheaper, safer and more environmentally-friendly. The thickness, ranging from monolayer to multilayers, can by adjusted using the Tang-Lau process. The effectiveness of an oxidation process is often evaluated by the carbon/oxygen ratios of the GO.

Dispersion Guides

Due to the presence of oxygen and hydroxide groups, the dispersibility of this material is significantly better than other 2d materials (such as graphene). High concentrations of GO can be dispersed in polar solvents, such as water. At Ossila, we have found that the most stable solutions can be produced using the following recipe:

  • Weigh out desired amount of material, this can go up to at least 5 mg.ml-1.
  • Add 1:1 ratio of deionized water to isopropyl alcohol.
  • Shake vigorously to break up material.
  • A short treatment in an ultrasonic bath will rapidly disperse the material.
  • For larger flakes, use a mechanical agitator instead (as sonication may damage the flakes).

Technical Data

General Information

CAS number7782-42-5 (graphite)
Chemical formulaCxHyOz
Recommended SolventsH2O, DMF, IPA
Synonyms
  • Single layer GO
  • GO
Classification / Family

2D semiconducting materials, Carbon nanomaterials, Graphene, Organic electronics

Colour

Black/Brown Sheets/Powder

 

Product Images

Monolayer Graphene OxideGraphene Oxide SEMSEM Images of flakes on silicon

 

留言框

  • 產(chǎn)品:

  • 您的單位:

  • 您的姓名:

  • 聯(lián)系電話:

  • 常用郵箱:

  • 省份:

  • 詳細(xì)地址:

  • 補(bǔ)充說明:

  • 驗(yàn)證碼:

    請輸入計(jì)算結(jié)果(填寫阿拉伯?dāng)?shù)字),如:三加四=7

深圳市澤拓生物科技有限公司是國內(nèi)專業(yè)的石墨烯 英國Ossila石墨烯氧化物E881 進(jìn)口石墨烯氧化物E882廠家,歡迎廣大顧客來電咨詢!
深圳市澤拓生物科技有限公司版權(quán)所有   |   技術(shù)支持:化工儀器網(wǎng)
聯(lián)系電話:0755-23003036   傳真:0755-23003036-807 GoogleSitemap 備案號:粵ICP備17105262號  管理登陸
在線客服
用心服務(wù)成就你我
日韩一级精品一区二区三区| 国产综合亚洲区在线观看| 欧美亚洲精品suv| 91久久精品专区一区二区 | 911精品网站在线播放| 激情 小说 亚洲 图片 伦| 日本一区二区三级在线观看| 久久久久久久久精品中文| 精品无人妻一区二区三区| 亚洲码在线观看| 6969啪国产精品视频| 夫妻激情视频一区二区三区| 国产自创无码av情景剧| 欧美成妇人吹潮在线播放| 中文字幕第一页在线视频| 亚洲精品国产av线路一| 在线你懂的国产亚洲欧美 | 国产精品另类激情久久久免费| 日本dvd专区中文在线| 国产亚洲欧美精品视频网站| 国产精品啪啪啪免费观看| 欧美一区二区三区成人片在线| 国产亚洲欧美综合在线区| 无码人妻一区二区三区免费视频| 女孩子互抠视频在线观看| 久久精品国产色蜜蜜麻豆| 精品一区二区三区久久久| 亚洲av乱码国产精品乱码| 国产精品密蕾丝视频下载| 国产精品清纯校花与男友| 成人区精品人妻一区二区不卡| 亭亭五月天在线观看视频| 中文字字幕在线乱码| 精品国产一区二区三区电影| 久久久久久久久久精品国产| 不卡一区二区三区av电影| 欧美 日韩 在线 综合| 亚洲国产精品99久久久久| 被鸡巴插到抽搐在线观看| 最新日本免费一区二区三区| 黄页视频在线观看免费版|