日韩欧美精品96一区二区,秋霞理论理论福利院久久,一个人的在线观看www,性温盈久久亚洲AV福利

供求商機(jī)
您現(xiàn)在的位置:首頁(yè) > 供求商機(jī) > 單壁碳納米管M2013L2 Ossila碳納米管M2012L1 進(jìn)口碳納米管M2013L1

單壁碳納米管M2013L2 Ossila碳納米管M2012L1 進(jìn)口碳納米管M2013L1

單壁碳納米管M2013L2 Ossila碳納米管M2012L1 進(jìn)口碳納米管M2013L1
點(diǎn)擊放大
供應(yīng)數(shù)量:
2291
發(fā)布日期:
2025/7/18
有效日期:
2026/1/18
原 產(chǎn) 地:
已獲點(diǎn)擊:
2291
產(chǎn)品報(bào)價(jià):
  [詳細(xì)資料]

只用于動(dòng)物實(shí)驗(yàn)研究等

Product List

All our SWNTs come packed as dry powders, which can be dispersed within the user's solvent of choice.

Single-Walled Carbon Nanotube Powders

Product codeM2012L1M2013L1M2013L2
Outer Diameter< 2 nm< 2 nm< 2 nm
Length5-50 μm4-20 μm5-30 μm
Specific Surface Area500-700 m2.g-1400-1000 m2.g-1400-1000 m2.g-1
Purity> 90%> 95%> 95%
MSDS  
Sale Quantities1 g250 mg, 500 mg, 1 g
Packaging InformationLight-resistant bottle

*For larger orders, please us to discuss prices.

Functionalised Single-Walled Carbon Nanotube Powders

Product codeM2014L1M2015L1
Outer Diameter< 2 nm< 2 nm
Length5-30 μm5-30 μm
Specific Surface Area380 m2.g-1380 m2.g-1
Functional GroupCOOHOH
Functional Group Wt.%~ 3%~ 4%
Purity> 90%> 90%
MSDS  
Sale Quantities250 mg, 500 mg, 1 g
Packaging InformationLight-resistant bottle

單壁碳納米管M2013L2 Ossila碳納米管M2012L1 進(jìn)口碳納米管M2013L1

 *For larger orders, please us to discuss prices.

 What are Single-Walled Carbon Nanotubes?

SWNTs are sheets of graphene that have been rolled up to form a long hollow tube, with walls a single atom thick. The existence of thin, hollow carbon tubes has been known about since their first observations by L. V. Radushkevich and V. M. Lukyanovich in 1952, however, the first observations of SWNTs themselves were not until 1976 when M. Endo synthesised a series of hollow carbon tubes via chemical vapour-growth. Wider interest in these low-dimensional materials did not occur until 1991, when two articles were independently published by: i) S. Iijima on the fabrication of multi-walled carbon nanotubes via arc discharge, and ii) J. W. Mintire, B. I. Dunlap, and C. T. White  on the predicted properties of SWNTs. The combination of a simple method for producing SWNTs and the potentially extraordinary properties they exhibit kick-started the growth of a wider research community into carbon nanotubes.

單壁碳納米管M2013L2 Ossila碳納米管M2012L1 進(jìn)口碳納米管M2013L1

Much like graphene, SWNTs have properties that differ considerably to those of bulk carbon (e.g. graphite). The mechanical properties vary significantly depending upon the axis you are measuring with nanotubes having extremely high Youngs Moduli (Up to 1TPa) and tensile strength (Up to 100 GPa) along the longitudinal axis. Along the radial axis, these values are a few orders of magnitude lower.

The electrical properties of carbon nanotubes are dependent upon the orientation of the lattice. The lattice orientation is given by two parameters (n, m). The image to the right shows how the n and m orientations relate to the longitudinal axis of the nanotube and the rotational axis. There are typically three types of nanotubes that can form, these are: the armchair (where n = m), zig-zag (n=x, m=0), and chiral (n=x, m=y).

Carbon nanotubes can exhibit either metallic properties or semiconducting properties, depending upon the orientation of the lattice. Zig-zag and armchair carbon nanotubes exhibit metallic properties, whilst chiral nanotubes can be either metallic or semiconducting depending upon the difference between the n and m units. In addition to this ability to exhibit both metallic and semiconducting electronic structures carbon nanotubes offer exceptional charge carrier mobilities, this is due to the combination of the delocalisation of electrons across the lattice and the small dimensions in the radial axis constraining movement of charge carriers along the longitudinal axis of the tubes.

Lattice parameters of single walled carbon nanotubes

How the lattice parameters relate to the physical structure of carbon nanotubes.

In addition to the electronic and mechanical properties of SWNTs, the thermal properties of these materials exhibit extreme anisotropy. Along the length of the tube, thermal conductivity can be up to 9 times higher than materials such as copper. However - across the radial axis, the thermal conductivity can be 250 times lower than that of copper. Much like its electrical and mechanical properties, SWNT's thermal properties can be severely affected by the presence of defects along the nanotube length. The presence of these defects lead to phonon scattering. When these defects interact with low frequency phonons, scattering can occur - reducing the thermal conductivity.

At the time being, there are limited commercial applications for SWNTs. They are used in composite materials as a method of improving mechanical strength. One of the current limiting factors in improving the range of applications of carbon nanotubes is the ordering of nanotube structure. Current commercial applications utilise disordered bundles of nanotubes, and these bundles have a significantly lower performance than that of individual nanotubes. Potential future uses for carbon nanotubes could be seen in areas such as transparent conducting layers for use in display technologies, conductive wires for nanoelectronics, electrodes in thin-film electronic devices, carbon nanotube yarns for ultra-strong fabrics, thermal management systems, advanced drug delivery systems and many other wide-ranging fields.

 Dispersion Guides

SWNTs are insoluble as prepared. However, through the use of surfactants and ultrasonic probes, it is possible to disperse and suspend small concentrations of nanotubes. For dispersing in aqueous solutions, we recommend the use of sodium dodecylbenzene sulfonate if an ionic surfactant is suitable. If a nonionic surfactant is needed, we recommend surfactants with high molecular weights.

  • Weigh out the desired amount of carbon nanotubes.
  • Mix together your solvent and surfactant of choice at the desired surfactant concentration; this should be below the critical micelle concentration of the surfactant.
  • Add the solvent-surfactant mix to the dry powder and shake vigorously to mix.
  • Either place an ultrasonic probe into the solution, or place the solution into an ultrasonic bath.
    • Be careful about the length of time and power used - because damage to the carbon nanotubes can occur, shortening their average length.
    • The resulting solution will be a mixture of suspended SWNT's and bundles of SWNT's, further sonication will help break up the bundles.
  • To separate out the individual nanotubes in solution from the bundles, the solution should be placed into a centrifuge. If the solution is centrifuged for a longer time and/or at a higher speed, the smaller bundles will be removed, narrowing the distribution of suspended nanotubes.

For functionalised SWNTs, it is possible to disperse them without the use of any surfactants. However, the total concentration of dispersed nanotubes will be lower. A maximum of 0.1mg/ml can be achieved for -COOH and -OH.

Technical Data

General Information

CAS number7440-44-0
Chemical formulaCxHy
Recommended DispersantsDI Water, DMF, THF, Ethanol, Acetone
SynonymsSingle-Walled Carbon Nanotubes, Single-Wall Carbon Nanotube, Carbon Nanotube, SWNT, CNT
Classification / Family1D materials, Carbon nanomaterials, Nanomaterials, Polycyclic aromatic hydrocarbons, thin-film electronics
AppearanceBlack fibrous powder

 

Characterisation

Single Walled Carbon Nanotube Raman SpectraRaman spectra of SWNT samples showing the presence of the G+ and G- band, the D band, and also the radial breathing mode peaks.

 

Single Walled Carbon Nanotube TEM ImageTEM image of an individual SWNT.

 

Single Walled Carbon Nanotube COOH XPS SpectraXPS spectra of the C1s peak for functionalized carbon nanotubes showing the presence of C-C, C-O, and O-C=O bonds.

 

1D Related Products

Single-Wall Carbon Nanotubes

Single-Wall Carbon Nanotubes

Double-Walled Carbon Nanotubes

Double-Walled Carbon Nanotubes

Multi-Walled Carbon Nanotubes

Multi-Walled Carbon Nanotubes

Single-Walled Carbon Nanotube Publications

  • Filamentous Growth of Carbon Through Benzene Decomposition, A. Oberlin et. al., J. Cryst. Growth, 32, 335-349 (1976); DOI: 10.1016/0022-0248(76)90115-9
  • Helical Microtubules of Graphitic Carbon, S. Iijima, Nature, 354, 56-58 (1991); doi: 10.1038/354056a0
  • Are Fullerene Tubules Metallic?, J. W. Mintire et al., Phys. Rev. Lett., 68, 631 (1992); doi: 10.1103/PhysRevLett.68.631
  • Large-Scale Production of  Single-Walled Carbon Nanotubes by the Electric-Arc Technique, C. Journetet. al., Nature, 338, 756-758, (1997); doi: 10.1038/41972
  • Bandgap Fluorescence from Individual Single-Walled Carbon Nanotubes, M. J. O'Connell et. al.,Science, 297, 593-596, (2002); doi: 10.1126/science.1072631
  • Atomic Structure and Electronic Properties of Single-Wall Carbon Nanotubes Probed by Scanning Tunnel Electron Microscope at Room Temperature. 
    A. Hassanien et. al. Appl. Phys. Lett., 73, 3839 (1998); DOI: 10.1063/1.122910
  • Solution Properties of Single-Walled Carbon Nanotubes. J. Chen et. al., Science, 282, 95-98, (1998); DOI: 10.1126/science.282.5386.95
  • Structure-Assigned Optical Spectra of Single-Walled Carbon Nanotubes. S. M. Bachilo et. al., 298, 2361-2366, (2002); DOI: 10.1126/science.1078727
  • Carbon Nanotubes—The Route Towards Applications. R. H. Baughman et. al. Science, 297, 787-792, (2002) DOI: 10.1126/science.1060928
想了解更詳細(xì)的產(chǎn)品信息,填寫(xiě)下表直接與我們聯(lián)系:

留言框

  • 產(chǎn)品:

  • 您的單位:

  • 您的姓名:

  • 聯(lián)系電話(huà):

  • 常用郵箱:

  • 省份:

  • 詳細(xì)地址:

  • 補(bǔ)充說(shuō)明:

  • 驗(yàn)證碼:

    請(qǐng)輸入計(jì)算結(jié)果(填寫(xiě)阿拉伯?dāng)?shù)字),如:三加四=7
深圳市澤拓生物科技有限公司 專(zhuān)業(yè)提供:大小鼠解剖器械包,瑞士Sipel真空泵,美國(guó)EMS電鏡耗材
深圳市澤拓生物科技有限公司版權(quán)所有   |   技術(shù)支持:化工儀器網(wǎng)
聯(lián)系電話(huà):0755-23003036   傳真:0755-23003036-807 GoogleSitemap 備案號(hào):粵ICP備17105262號(hào)  管理登陸
在線(xiàn)客服
免费萌白酱国产一区二区| 亚洲av鲁丝片一区二区| 蜜臀avxxx在线播放| 国产日产久久高清欧美一区| 91大神在线精品免费福利| 无码无套少妇毛多19P| 2016亚洲男人的天堂| 97天天拍天天爱天天爽| 国产精品入口麻豆免费看| 久久九九视频这里只有精品| 亚日韩在线中文字幕亚洲| 亚洲偷自拍另类图片二区| 欧美经典三级一区二区三区| 骚穴网在线观看| 国内精品久久久久久野外| 亚洲精品日本国产一区二区| 亚洲成a人片77777kkkk| 小泽玛丽亚电影在线观看| 午夜久久水蜜桃一区二区| 久久精品国产亚洲孕妇无| 国产精品电影网在线观看| 91精品国产综合久久尤物| 中文字幕日韩有码国产精品| 国产精品一区第二页在线| 亚洲肉丝袜美女美腿诱惑| 久久久国产午夜精品一区| 久久亚洲精品无码爱剪辑| 久久久精品国产亚州av| 精品少妇久久一区二区三区| 日韩视频一区二区三区网站| 国产在线观看| 秋霞成人理论无码电影网| 插逼色日韩欧美精品视频| 亚洲色中文字幕在线激情| 久久久精品一区二区三洲| 麻豆一精品传媒媒短视频| 成人精品高清视频在线观看| 久久精品无码一区二区无码| 色呦呦视频在线观看视频| 亚洲中文字幕久久精品品| 欧美日韩国产 一区二区|